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The Q-Stability Theorem for Flows

CHARLES PuGgH* (Berkeley) and MICHAEL SHUB** (Waltham)

§ 1. Introduction

Let X be a C" tangent vector field, =1, on a compact smooth
Riemannian manifold M, without boundary, and let ¢ = {g,} be the flow
it generates. We think of ¢ as a C" action of R on M. In [4, 5] Smale
states and proves the Q-stability theorem for difffomorphisms of M —
that is, C" actions of Z on M. He states the corresponding theorem for
flows and says “Presumably there is no difficulty in proving similar
theorems for ordinary differential equations by the same method.” This
paper does just that and, assuming [2, 3] does it without much difficulty.

Q-stability theorem (for flows). If ¢ obeys Axiom A’ and has the no
cycle property then it is Q-stable.

See § 2 for definitions of these terms.

Remark. In § 6 we handle global Q-explosions in way different from
Smale’s.

§ 2. Definitions and 22-Decompositions

We denote by Q, the set of non wandering points of ¢. Follow-
ing [4] we say that ¢ obeys Axiom A’ a if the tangent flow To={T¢,},
Te,: TM — TM, leaves invariant a continuous splitting T,M =E"®
E? @ E° such that

(i) To, expands E*, t>0.

(i) Te, contracts E*, t>0.

(iii) Ef=span (X))
for some Finsler on TM. Since T¢,(X,)=X,, , for any smooth flow,
invariance of E? is automatic.

A compact orbit of ¢ is either a circle or a point. The former is called
a closed orbit, the latter a fixed point.

If p lies on a closed orbit of ¢, 0, then peQ and E¢=T, 0. By (i), (ii)
0 is hyperbolic — that is, the flow near ¢ induces a transformation (the
Poincaré map) on a hypersurface transverse to ¢ at p and p is a hyperbolic
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fixed point of this transformation. If p is a zero of X then p is a fixed
point of ¢ and belongs to 2, but ES=0. By (i), (ii) p is a hyperbolic fixed
point. Hyperbolic fixed points are isolated, M is compact, and so F=
{p:o,p=p}={p:X,=0}={p:E$=0} is finite. Continuity of E® implies
that F is disjoint from C1(Q— F).

In particular closed orbits can not pass near fixed points. The second
half of Axiom A’ is Axiom A’ b.

The closed orbits are dense in 2 —F.

Now we can state one of the principal results.

(2.1) Q-Decomposition Theorem. If ¢ obeys Axiom A’ then Q decom-
poses uniquely as Q=0Q,0---UQ,, where the Q, are disjoint, indecom-
posable components of . On each Q;, @ is topologically transitive.

“Indecomposable” means that Q,; does not decompose as ;U Q;
where Q, Q} are disjoint components. “Component” is used in the usual
sense a relatively open and closed non empty subset.

“Topologically transitive” means that the orbit, U @, S, of any rela-
teR
tively open non empty set S< £, is dense in Q,. Topological transitivity

is equivalent to the existence of a point pe€; whose orbit {¢,p: teR}
is dense in Q, [1].

Note that each @-orbit ¢ <, being connected, lies in just one £,.
That is, the Q, are invariant. The remarkable assertion of (2.1) is that
the process of successively dividing @Q into finite disjoint unions of
components terminates at a finite stage. Given the other conditions
“uniqueness” in (2.1) is clear. In § 4 we prove (2.1).

Now suppose @ obeys Axiom A’ and has Q-decomposition Q=
Qou---uR, as in (2.1). If a(x)=Q; and w(x)=Q;, for some xeM, we
write 2, SQ;. The sets a(x), w(x) are the usual a- and w-limit sets of the
trajectory through x:

a(x)= [ Cli{p,x:t<t} w(x)= ) Cl{p,x:t=1}.
t<0 >0

¢ is said to obey the no cycle property if there is no cycle respecting
this partial order <. A cycle would be Q, =Q, <Q, <---=Q, =Q,
with i,, ..., i, distinct and k= 1.

To complete the explanation of (1.1) we must recall the idea of Q-
stability. Two flows are Q-conjugate if there is a homeomorphism of the
nonwandering set of the first onto that of the second, sending sensed
trajectories onto sensed trajectories. The flow ¢ is said to be Q-stable
if it is Q-conjugate to each flow ¢’ which is C! near it.

Strictly speaking an Q-conjugacy is not a conjugacy because it is not
required to preserve the parameterization of trajectories; only their
sense (=direction). A sequence of flows ¢!, %, @3, ... tends to ¢ in the
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C" sense if @"|M x [0,1] - @|M x [0, 1] uniformly in the C" sense. Since
¢ is completely determined by ¢|M X [«, f] for any a<p, this defines
the C” topology on the set of C" flows in a way compatible with our
intuition.

The proof of the Q2-stability theorem (1.1), breaks up into three parts:
the Q-decomposition theorem, purely local Q-explosions, and global
Q-explosions.

§ 3. Stable Manifold Theory for Flows

Here we amplify what appears in [2, § 7]. Let ¢ obey Axiom A'. The
time one map, ¢, , is a diffeomorphism leaving invariant the compact set
Q. Its tangent leaves E*@® E@® E° invariant. We may apply [3, 3B.5] to
¢, —and likewise to ¢ _, —giving

(3.1) Theorem. If ¢ obeys Axiom A’ then through each point peQ
pass C" injectively immersed manifolds W*(p), W*(p) tangent to E,, E;, at
p. They are characterized by

WH(p)={xeM:for some c<0 d(p,x,¢p)e’—>0 ast——o},
Wip)={yeM:for some >0 d(p,y,¢,p)e*—>0 ast—oo}.

W*(q) and W*"(p) either coincide or are disjoint. The families # ™=
{W*(p):peQ}, W*={W?*p:peQ} are invariant by ¢:¢,(W*p)=W*(p,p),
¢, (W*p)=W*(o,p).

W is locally smoothly continuous in the sense that if q— p then any
compact smooth disc in W*(p) is uniformly approached in the C' sense by
smooth discs in W*(q). Similarly for #.

For any set S=Q, we write W*S= () W*(p), W*S= ) W*(p). When

€S es
S=0Q, we just write W* W*. For peM ‘;md 6>0, we denpote by 0,(p) the
o-orbit of p, {p, p: —5 <t <6} and by O(p) its total orbit, {¢,p:teR}.

From (3.1) W*0, W* (@ are smooth submanifolds, invariant by the
flow, and smoothly fibered by the W*p, W* p, pe @. At O, they are tangent
to E“*@ E®, E*@® E*. Either W* 0, W" (V" coincide or are disjoint. Likewise
w20, W'

For small ¢ >0 we denote by W*(p) the closed ¢ disc in W* p, centered
at p. Precisely, W,(p) is the connected component of exp(Tp M(e))nW*(p)
containing p. The set T, M(e) is the closed &-ball in the tangent space of
M ard exp is the smooth exponential on M. Similarly, we define W3 (p),
WS, WS, W, W

We say that Q has local product structure if

WA Wi=0

for some &> 0. The next theorem repeats [2, 7.2].
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(3.2) Theorem. If ¢ obeys Axiom A’ then Q has local product structure.

Proof. The fixed point set F is bounded away from Q— F and so, for
small >0, we must just prove that if x, x'e 2 — F have ye W*(x) n W} (x')
then yeQ. Let © be the smallest period of a closed orbit and choose 4,
0<d<1/2. For small ¢>0, (3.1) implies that the intersections W}(x)n
Wi 0,x") and W .(x)n W;,(0,x) are transverse and consist of single
points, say y, y'. No other intersections occur when ¢ is replaced by 3e.
By Axiom A'b we approximate x, x’ by p, p’ with O(p), O(p’) compact.
By (3.1), Wj.(p) A W5.(0,p) in a point g near y and W}, (p) /A Wi (0;p)
in a point ¢’ near y'. (See Fig. 1.) By the usual Cloud lemma [2, 4] g, g’ 2.
As Qs a closed set, y and y’ also belong to , proving the theorem.

Fig. 1. Local product structure

§ 4. 2-Decomposition

Here we prove (2.1) and show how M is divided into the stable
manifolds of the Q,.

Proof of (2.1). By (3.2) choose ¢>0 with W), nW;,=Q and 0<d<
half the least period of any closed orbit. For each peQ let

N(p)={z=W (N W(O;x):xe W p, ye Wi (O;p)}-

By (3.1), N(p) contains a neighborhood of p in Q. For any zeQ near p
has W*(p) 7 W (0,2)= {x}, W(2)® W?(,p)=1{y} and so zeN(p). By
(3.2), N(p)=Q.

Exactly as in [4], we let Q(p) be the closure of the orbit of N(p),
C1{p,z:zeN(p)}. This decomposes Q as | ] 2(p). We claim that these

ref}

Q(p) suffice for (2.1). Clearly Q(p) is closed and invariant.
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As in [4] we notice that (p) is unchanged if N(p) is replaced by any
nonempty relatively open subset of 2 in N(p), say V. Indeed if z is any
point of N(p) we can approximate it by g with ¢(g) compact and we can
also find ¢’ in V with 0(¢’) compact. By (3.1) the intersections

Wi @A W;.(0,q) and W (q) A W;.(0;9)

are single points. By the Cloud lemma [2, 4], ¢, presses ¥, the neighbor-
hood of ¢', toward W} (g). In particular, the orbit of ¥ contains ¢ in its
closure. As q approximates z, it has z in its closure, too. Thus C1(0V)>
N(p), which implies by invariance that C1(0 V)=Q(p).

This lets us establish the required properties for UQ(p). If geQ lies
near Q(p) then the orbit of N(p) meets N(q) and so, for some nonempty
relatively open V' =N(g) and some teR, ¢ V< N(p). Since Q(p)=
C1(0(p,V)) and 2(q)=C1(0 V) they are equal. Thus the Q(p) are open
in © and either coincide or are disjoint. Since Q is compact, there are
only finitely many disjoint Q(p).

Since Q(p)=Cl(0O V) for any nonempty open V<Q(p), topological
transitivity is obvious. Topological transitivity implies indecomposability
and the proof of (2.1) is complete.

Since the o limit of any point xe M is a connected subset of ©, it
belongs to exactly one Q,. Thus M is disjointly decomposed as U w*Q
and similarly as | | W*Q

Next we prove a lemma to be used in § 6.

4.1) Lemma. W"Q,nW* Q,=20, if ¢ obeys Axiom A'.

Proof. Recall that local product structure (3.2), says only that
WrQNnW;Q,=Q, If ze W*(y)n W*(x) with x, yeQ, we must show that
zel;.

To prove that z is non wandering we use the topological transitivity
of p on Q;, (2.1).

Let U be a neighborhood of z in M and choose neighborhoods X, Y
of x, y so small that x’'e X nQ,, y'e Y nQ, implies that W*(y')n U+,
W*(x')n U *0. By topological transitivity 0(X nQ,)n (Y nQ,)+9. Since
the compact orbits are dense, we may therefore choose ¢, a compact
orbit in Q, meeting X and Y. Thus W*0@ and W*@ both meet U. By the
Cloud lemma [2,4] ¢, U U=0 for large t and so zeQ. If z were in

Q;+ Q, then so would be a(z) U w(z). But this contradicts our assumption
that ze W*Q,n W*Q,.

§ 5. Local 2-Explosions

Here we prove they can’t occur.

(5.1) Theorem. Let ¢ satisfy Axiom A’ and have Q-decomposition
Q=Q,u---uQ,. There exist neighborhoods U, of Q; and a C*-neighbor-
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hood U of @ such that if @' has ' =Q(¢’) then Q' N U, contains a
maximal closed invariant subset Q. of U, which is hyperbolic and there
exists an orbit preserving homeomorphism h: Q, - Q.

This means that ©,; can not locally explode to an Q; essentially dif-
ferent from Q,. It remains possible, however, for Q' to be essentially
larger than ©Q because some new orbits of Q' might be near no single
Q, that is, might not be local.

Proof of (5.1). Fix 10. Then £, is a normally hyperbolic laminated
set for ¢, and, since ¢ is of class C, the lamination is sufficiently smooth
to guarantee “plaque-expansiveness” [3, §47. If ¢, is C* close to ¢,
then there is a canonical ¢’-invariant lamination near Q;, A; [3, § 4], and
there is a canonical homeomorphism h: Q,— A; near the inclusion
Q;— M, sending lamina to lamina. (Actually h is just unique up to the
composition of homeomorphisms Q; - Q,, near the inclusion, sending
each laminum onto itself.) It therefore remains only to show that A;
equals Q;, the maximal ¢’-invariant subset of U,.

Since the compact orbits are dense in ;, they are dense in A; so
A;=Q;. We must show A;0Q;, i.e. hQ,5Q;. When U, is a sufficiently
small neighborhood of Q; and ¢’ is C' near enough ¢, Q; must at least
be a normally hyperbolic laminated set for ¢’ [3, § 4]. By the uniformities
of [3,§ 3c], ¢, lies in the neighborhood of ¢, having canonical laminated
sets that correspond to ;. That is there exists a canonical (unique up to
small translations along lamina) homeomorphism h': Q; - A when A is a
@.-invariant normally hyperbolic laminated set. By [2] there are no
@-invariant sets near, but not contained in, ;. Thus when no perturbation
at all of @, is made, the canonical homeomorphism of Q, into M is the
inclusion and so by uniqueness [3, §4] h'ch: Q,— A;— Q, is a homeo-
morphism sending each orbit onto itself. Therefore A;=Q; and (5.1)
is proved.

§ 6. Global 2-Explosions in Topological Dynamics
Let A4y, ..., 4,, be compact invariant disjoint subsets of M such that
QcAgv...ud,.
Define A=A4,0---u A, and
WA, ={xeM: a(x)c A} W*A,={xeM: w(x)=A;}.

Here M can be any compact metric space and ¢ any continuous flow.
Since each a(x), w(x) is a connected invariant subset of Q, we have the
disjoint decompositions
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We say that A;< 4 if there exists xe M — A such that a(x) = 4, w(x) = 4;.
A cycle is a cham A,OSA <--=4, with k21 and i, =i,. (Note that

now we permit a “self cycle” A S A, if WA, an WA, +4, . The
definition in § 2 does not. Otherwise they are the same.)

(6.1) Theorem. Let U, ..., U, be any neighborhoods of Ay, ..., A,,.
If there are no cycles among the A, then any flow C° close to ¢ has non
wandering set contained in Uy --- L U,,.

__ Proof. Without loss of generality we assume U, ..., U, are open,
Uy, ..., U, are disjoint, and prove that the non wandering set of the
nearby flow must liein Uyu---w U,,.

By the no cycle assumption,
WA, N WS A= A;.

For if x¢ A; were a point of intersection then x¢A;, j+i (because w(x) is
contained in A;, not in 4;) and so we would have a cycle from A, to itself.

Now suppose the theorem is false. Then there are flows ¢, — ¢ which
have non wandering points in M — U, U=U,u---uU,. Let us write,
for clarity, ¢(¢,-) instead of ¢,(-) and ¢,(¢,*) instead of ¢, ,(-). Since
M —VU is compact, we may assume without loss of generality that arbi-
trarily near some xeM — U, there occur non-wandering points of ¢,.
Thus, there exist x,, y, tending to x such that ¢,(¢,, x,)=y, for some
sequence t, — o0.

Consxder a(x)cd;,, wl(x)cA; . Since we have no cycles iy=+i,.
Since w(x)< 4, , by continuity there is a sequence t, — oo such that

0<trll<tn (Pn(t,,, n)-_)A
Thus there is a sequence T, — oo such that
n<Tl<t, o,(T,x,)edl

.t x)el; on [i, T4,

n’ n

ll’

T} —tl— oo,

We simply let T;! be defined as the first time ¢> ¢} that ¢, (, x,)edU, .
Since ¢,(t,, x,)=y,¢ U, , this T! occurs before ¢,.

lx’
Since A, is g-invariant T,! —t; is forced to tend to co. (Otherwise,
by contmuxty and compactness of A,,, there would be a point x, of
, having o(t, x,)edU, for some ﬁmte t. But ¢(t, x,) must remam
always in 4,.)

Since U, is compact, we may assume that

0u(T4 %)= x'€dU, .
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Since T;! — 1} — o0, O_(x")= U,

Thus a(x')= A, . Since x'¢A4 and there are no cycles, w(x!)<=4,,
with i, 1}, ig. i

Now we proceed with x! similarly. Since w(x')<=4;, by continuity
there is a sequence t2 — oo such that

Ti<ti<t,, @tk x)—~4,.
Thus there is a sequence 7, — oo such that
12<Ti<t,, @ (T2 x,)edU,,

@a(t. x,)eU, on [, T2,

T?—t?> .

We simply let T; be defined as the first time ¢ > ¢Z that ¢,,(¢, x,)€ 0U,, . Since
@t x)=y,¢U,, this T.? occurs before t,. Since A4,, is ¢-invariant
T,? —t, is forced to tend to co. Just as before, this produces x*€dU;,
such that a(x?)c 4,,, o(x?)c A;,, izFig, iy, i,.

We may proceed with x? exactly as with x! and produce, by iteration,
a chain of A;s with no repetitions and length greater than m. This is
ridiculous and the theorem is proved.

As a consequence we have the Q-stability theorem. That is

(6.2) Corollary. If ¢ is a C' flow obeying Axiom A’ and its Q-de-
composition Q=Q,---UQ, has no cycles in the sense of §2 then it is
Q-stable.

Proof. By (4.2) there are no self cycles in the Q-decomposition, so we
may let A,=£, and apply (6.1). The non-wandering set of any ¢’ C° close
to ¢ lies in Uy U --- U U, where U, is the neighborhood of @, constructed
in (5.1). Thus, if ¢’ is also C* near @, (5.1) says that ¢’ is Q-conjugate to o,
proving the corollary.

§ 7. Other Treatments of Global £2-Explosions

Instead of the topological arguments given in § 6, we could have
imitated Smale’s filtration arguments applied to the time-one map ¢,.
Saturating the resulting filtration by letting ¢, act, 0St<1 would have
been necessary to have ¢; take the elements of the filtration into their
interiors for all t=2.

Alternatively, and more in the spirit of flows, we could have defined
a smooth gradient function f: M —[0,m]. Let Q,<Q, <---<Q, be
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a relabelling of the ©Q; in a simple order subordinate to <. Then f will
obey
a) f710,i1= Ww*Q¥3, [f)nG=0,.
ji
b) f increases strictly on each ¢ trajectory off Q.

Using the smooth Lyapunov theory of [6] it is not hard to show that
f exists because §, is a uniform repellor (a uniformly asymptotically
unstable compact invariant set for ¢). In fact [6] produces a smooth
Lyapunov function f;: M — [0, 1] such that

a) f710)=8;, f()=M-Ww"Q,.
b)) f, strictly increases on each ¢ trajectory in W*Q,—Q,.

m
Then f=) f;is our gradient function and the usual arguments show

)
that, the trajectory of any ¢’ which is C! near ¢ also rises through the
S-level surfaces away from Q. Hence 2(¢") can not occur far from Q.

We wish to thank J. Palis and M. Hirsch for useful conversations.
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