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The O-Stability Theorem for Flows 

CHARLES PUGH* (Berkeley) and MICHAEL SnuB** (Waltham) 

w 1. Introduction 

Let X be a C r tangent vector field, r >  1, on a compact  smooth 
Riemannian manifold M, without boundary, and let ~p = {~Pt} be the flow 
it generates. We think of q~ as a C r action of R on M. In [4, 5] Smale 
states and proves the O-stability theorem for diffeomorphisms of M -  
that is, C' actions of Z on M. He states the corresponding theorem for 
flows and says "Presumably there is no difficulty in proving similar 
theorems for ordinary differential equations by the same method." This 
paper does just that and, assuming [2, 33 does it without much difficulty. 

O-stability theorem (for f lows).  I f  q~ obeys Axiom A' and has the no 
cycle property then it is O-stable. 

See w 2 for definitions of these terms. 

Remark. In w 6 we handle global O-explosions in way different from 
Smale's. 

w 2. Definitions and ~2-Decompositions 

We denote by O, the set of non wandering points of ~p. Follow- 
ing [4] we say that ~p obeys Axiom A'a  if the tangent flow T~p= {T~pt}, 
T~pt: TM--* TM, leaves invariant a continuous splitting T~ M = E u �9 
E* �9 E s such that 

(i) T~pz expands E u, t > O. 

(ii) T~pt contracts E s, t > 0. 

(iii) Ep~=span (Xp) 

for some Finsler on TM. Since T~ot(Xp)=-X~, p for any smooth flow, 
invariance of E ~~ is automatic. 

A compact orbit of ~p is either a circle or a point. The former is called 
a closed orbit, the latter a fixed point. 

I fp  lies on a closed orbit of~p, 6, then p ~ 2  and E~= Tp(~. By (i), (ii) 
0 is h y p e r b o l i c - t h a t  is, the flow near (~ induces a transformation (the 
Poincar6 map) on a hypersurface transverse to 0 at p and p is a hyperbolic 
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fixed point of this transformation. If p is a zero of X then p is a fixed 
point of q~ and belongs to O, but E~ = 0. By (i), (ii) p is a hyperbolic fixed 
point. Hyperbolic fixed points are isolated, M is compact, and so F = 
{P: q~t P-- P} = {P: Xp = 0} = {p: E~ = 0} is finite. Continuity of E ~ implies 
that F is disjoint from C 1 ( O - F ) .  

In particular closed orbits can not pass near fixed points. The second 
half of Axiom A' is Axiom A' b. 

The closed orbits are dense in O - F .  

Now we can state one of the principal results. 

(2.l) 12-Decomposition Theorem. I f  q~ obeys Axiom A' then 0 decom- 
poses uniquely as O = O o w - - - w O  e where the 0~ are disjoint, indecom- 
posable components of 0. On each 0i, ~o is topologically transitive. 

"Indecomposable"  means that O~ does not decompose as O'iw 0~' 
where 0 '  i , O'i' are disjoint components. "Componen t "  is used in the usual 
sense a relatively open and closed non empty subset. 

"Topologically transitive" means that the orbit, U ~~ S, of any rela- 
teR 

tively open non empty set S ~ O i is dense in 0 i. Topological transitivity 
is equivalent to the existence of a point p~O~ whose orbit {q~tP: t~R} 
is dense in O i [1]. 

Note that each q~-orbit • c O, being connected, lies in just one O~. 
That  is, the O~ are invariant. The remarkable assertion of (2.1) is that 
the process of successively dividing O into finite disjoint unions of 
components terminates at a finite stage. Given the other conditions 
"uniqueness" in (2.1) is clear. In w 4 we prove (2.1). 

Now suppose q~ obeys AxiomA'  and has O-decomposition O =  
OoW.. .uO, ,  as in (2.1). If ~(x)cf2  i and ~o(x)cOi, for some x~M,  we 
write O i < Oj. The sets ~(x), oJ(x) are the usual ~- and m-limit sets of the 
trajectory through x: 

~(x)= ~ E l  {q)tx:t<r} ~o(x)= ~ C1 {q~tx:t>z}. 
t<0  ~>0 

~p is said to obey the no cycle property if there is no cycle respecting 
this partial order <.  A cycle would be Oio <Oi1 < Oi2<...  <Oik <Oio 
with i 0 . . . .  , i k distinct and k > 1. 

To complete the explanation of (1.1) we must recall the idea of O- 
stability. Two flows are O-conjugate if there is a homeomorphism of the 
nonwandering set of the first onto that of the second, sending sensed 
trajectories onto sensed trajectories. The flow ~0 is said to be O-stable 
if it is O-conjugate to each flow ~0' which is C 1 near it. 

Strictly speaking an O-conjugacy is not a conjugacy because it is not 
required to preserve the parameterization of trajectories; only their 
sense (= direction). A sequence of flows q~l, q~2, q~3 . . . .  tends to q~ in the 
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C' sense if q~nlM x [0, 1] ~ q~lM x [0, 1] uniformly in the C" sense. Since 
is completely determined by q~lM • [~, O] for any ~<fl,  this defines 

the C" topology on the set of C' flows in a way compatible with our 
intuition. 

The proof of the O-stability theorem (1.1), breaks up into three parts: 
the O-decomposition theorem, purely local O-explosions, and global 
O-explosions. 

w 3. Stable Manifold Theory for Flows 

Here we amplify what appears in I-2, w 7]. Let tp obey Axiom A'. The 
time one map, ~01, is a diffeomorphism leaving invariant the compact set 
O. Its tangent leaves EUOE~'OES invariant. We may apply [3, 3 B.5] to 
q h -  and likewise to q~_ 1 -  giving 

(3.1) Theorem. I f  q~ obeys Axiom A' then through each point pEO 
pass C" injectively immersed manifolds WU(p), WS(p) tangent to E~, E~ at 
p. They are characterized by 

WU(p)={x~M:forsome c < 0  d(%x,%p) eCt~O a s t ~ - ~ } ,  

WS(p)={yeM:forsome c > 0  d(q~ty, tptp ) ect~O as t ~ } .  

W"(q) and W~(p) either coincide or are disjoint. The families ~1r 
{W~(p):peO}, ~/rs= {WS p: peO} are invariant by ~o:~0~(W~p)= W"(%p), 

p) = p). 
W'" is locally smoothly continuous in the sense that if q ~ p then any 

compact smooth disc in W~(p) is uniformly approached in the C 1 sense by 
smooth discs in WU(q). Similarly for ~1r r~. 

For any set S c O ,  we write W~S= ~ WU(p), W 'S= ~ W'(p). When 
pES pES 

S=O,  we just write W ~, W ~. For  p e M  and 6>0,  we denote by d~(p) the 
6-orbit of p, {% p : - 6 < t < f i }  and by 0(/9) its total orbit, {~ptP:teR}. 

From (3.D W"O, W~d ~ are smooth submanifolds, invariant by the 
flow, and smoothly fibered by the W ~ p, W ~ p, p e (P. At tP, they are tangent 
to E " ~ E  ~, E~'~E ~. Either W" dT, W ~ dY coincide or are disjoint. Likewise 
W~d~, W~d7 '. 

For  small e > 0 we denote by W~ (p) the closed e disc in W u p, centered 
at p. Precisely, W~ ~ (p) is the connected component of exp (Tp M (e)) c~ W u (p) 
containing p. The set Tp M(e) is the closed e-ball in the tangent space of 
M arid exp is the smooth exponential on M. Similarly, we define W~(p), 
w: s, w: s, w:. 

We say that ~ has local product structure if 

w : a  w : = o  

for some e > 0. The next theorem repeats [2, 7.2]. 
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(3.2) Theorem. If  q) obeys Axiom A' then 12 has local product structure. 

Proof. The fixed point set F is bounded away from 1 2 - F  and so, for 
small ~ > 0, we must just prove that if x, x 'e  12- F have ye  W~ ~ (x) n W~ ~ (x') 
then y~12. Let z be the smallest period of a closed orbit and choose fi, 
0 < fi < z/2. For small 5> 0, (3.1) implies that the intersections W~(x)n 
W~S(O~x ') and W~(x')~Wi~((9~x ) are transverse and consist of single 
points, say y, y'. No other intersections occur when ~ is replaced by 3e. 
By Axiom A'b we approximate x, x' by p, p' with d)(p), O(p') compact. 
By (3.1), W~(p)?~ W~((fl~p') in a point q near y and W~(p')?~ W~,(O~p) 
in a point q' near y'. (See Fig. 1.) By the usual Cloud lemma [2, 4] q, q'~12. 
As 12 is a closed set, y and y' also belong to 12, proving the theorem. 

W'(~x) 

Fig. 1. Local product structure 

w 4. fl-Deeomlmsition 
Here we prove (2.1) and show how M is divided into the stable 

manifolds of the 12i. 

Proof of (2.1). By (3.2) choose e > 0  with W ~ n  W~=12 and 0 < f i <  
half the least period of any closed orbit. For  each pe12 let 

N(p)={z= W~U (y) n W~S(dP~x):xEW~Up, y~ W~s(E)~ p)}. 

By (3.1), N(p) contains a neighborhood of p in O. For any zeO near p 
has W~U(p)?~ W~'(d)~z)= {x}, W~"(z) �9 W2(d)~p)= {y} and so zeN(p). By 
(3.2), N(p) c a. 

Exactly as in I-4-1, we let 12(p) be the closure of the orbit of N(p), 
C1 {r This decomposes O as U 12(p). We claim that these 

pen 
O(p) suffice for (2.1). Clearly 12(p) is closed and invariant. 
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As in [4] we notice that O(p) is unchanged if N(p) is replaced by any 
nonempty relatively open subset of O in N(p), say E Indeed if z is any 
point of N(p) we can approximate it by q with (9(q) compact and we can 
also find q' in V with r (q') compact. By (3.1) the intersections 

W~(q)7~ W~((9~q') and W;~(q')?~ W~((9~q) 

are single points. By the Cloud lemma [2, 4], q~t presses V, the neighbor- 
hood of q', toward W~(q). In particular, the orbit of V contains q in its 
closure. As q approximates z, it has z in its closure, too. Thus C 1 ((9 V) 
N(p), which implies by invariance that C 1 ((9 V)= 009). 

This lets us establish the required properties for U 0 (p). if q e 0 lies 
near O(p) then the orbit of N(p) meets N(q) and so, for some nonempty 
relatively open V c N ( q )  and some z~R, q~VcN(p) .  Since O(p)= 
C 1 ((9 (q~, V)) and O(q)= C 1((9 V) they are equal. Thus the O (p) are open 
in O and either coincide or are disjoint. Since O is compact, there are 
only finitely many disjoint O(p). 

Since O(p) = C1 ((9 V) for any nonempty open V c  O(p), topological 
transitivity is obvious. Topological transitivity implies indecomposability 
and the proof of (2.1) is complete. 

Since the ~ limit of any point x e M  is a connected subset of 0, it 
belongs to exactly one O~. Thus M is disjointly decomposed as U Wu ~  
and similarly as U Ws oi.  

Next we prove a lemma to be used in w 6. 

(4.1) Lemma. W"f2,n W ~ Oi=O i if q~ obeys Axiom A'. 

Proof. Recall that local product structure (3.2), says only that 
W~' Oi c~ W~ ~ f2 i = 0 i. If z e W u (y) n W ~ (x) with x, y ~ O i we must show that 
zeO i. 

To prove that z is non wandering we use the topological transitivity 
of q~ on Di, (2.1). 

Let U be a neighborhood of z in M and choose neighborhoods X, Y 
of x, y so small that x ' ~ X n O i ,  y '~YnQ~ implies that W"(y')n U:~0, 
W * (x') n U 4: 0. B y topological transitivity (9 (X n Oi) n (Y c~ Oi ) .  0. Since 
the compact orbits are dense, we may therefore choose (9, a compact 
orbit in O~ meeting X and Y. Thus W"(9 and W~(_9 both meet U. By the 
Cloud lemma [2,4] q~tUnU+O for large t and so z~O. If z were in 
P j +  O i then so would be ~(z)w o~(z). But this contradicts our assumption 
that z~ W"O~ n W~O~. 

w 5. Local O-Explosions 

Here we prove they can't occur. 

(5.1) Theorem. Let q~ satisfy Axiom A' and have G-decomposition 
0 = 00 u . . .  u 0,,. There exist neighborhoods U i of 01 and a C 1-neighbor- 
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hood all of (p such that if q)' eql has f2'=f2(~o') then f2' c~ U i contains a 
maximal closed invariant subset t2'i of Ui which is hyperbolic and there 
exists an orbit preserving homeomorphism h: f2 i -* I2' i. 

This means that t2~ can not locally explode to an f2'~ essentially dif- 
ferent from f2i. It remains possible, however, for I2' to be essentially 
larger than O because some new orbits of f2' might be near no single 
f2 i that is, might not be local. 

Proof of(5.1). Fix �9 4= 0. Then f2 i is a normally hyperbolic laminated 
set for q~ and, since (p is of class C 1, the lamination is sufficiently smooth 
to guarantee "plaque-expansiveness" [3, w If q~'~ is C 1 close to % 
then there is a canonical 9'-invariant lamination near O~, A'~ [3, w 4], and 
there is a canonical homeomorphism h: I2~A'~ near the inclusion 
f2i ~ M, sending lamina to lamina. (Actually h is just unique up to the 
composition of homeomorphisms f2~f2~,  near the inclusion, sending 
each laminum onto itself.) It therefore remains only to show that A'~ 
equals f2'~, the maximal q~'-invariant subset of U~. 

Since the compact orbits are dense in t2~, they are dense in A'~ so 
A ' i c Q '  i. We must show A'i~f2'i, i.e. h Q i ~ Q '  i. When U/is a sufficiently 
small neighborhood of f2~ and ~o' is C ~ near enough tp, f2'~ must at least 
be a normally hyperbolic laminated set for ~0'~ [3, w 4]. By the uniformities 
of [3, w 3 c], (p~ lies in the neighborhood of (p'~ having canonical laminated 
sets that correspond to f2'~. That is there exists a canonical (unique up to 
small translations along lamina) homeomorphism h': f2'i --. A when A is a 
%-invariant normally hyperbolic laminated set. By [2] there are no 
(p-invariant sets near, but not contained in, f2~. Thus when no perturbation 
at all of % is made, the canonical homeomorphism of t2~ into M is the 
inclusion and so by uniqueness [3, w 4] h'o h: f2 i-* A' i ~ f2 i is a homeo- 
morphism sending each orbit onto itself. Therefore A'i=O' ~ and (5.1) 
is proved. 

w 6. Global 12-Explosions in Topological Dynamics 
Let A o . . . . .  A m be compact invariant disjoint subsets of M such that 

Q c A o ~  ... u A  m. 

Define A = A o u . . .  u A m and 

W " A i = { x ~ M :  ~(x)cAi} WSAi= {x~M: ~o(x)cAi}. 

Here M can be any compact metric space and ~p any continuous flow. 
Since each ~(x), ~o(x) is a connected invariant subset of [2, we have the 
disjoint decompositions 

~) W" Ai= M = ~ WS Ai. 
i=O i=0  
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We say that A i__< Aj if there exists x ~ M -  A such that ~ (x) c A~, co (x) c Aj. 
A cycle is a chain A~o_-<Ai, _~... =< A~k with k__> 1 and i k = i o. (Note that 
now we permit a "self cycle" Aio<=Aio if W " A i o n W S A i o # A i o  . The 
definition in w 2 does not. Otherwise they are the same.) 

(6.1) Theorem. Let  U o . . . . .  U m be any neighborhoods o f  A o . . . .  , Am. 
I f  there are no cycles among the A i then any f low C O close to tp has non 
wandering set contained in U o u ... u U m. 

_ Proof. Without loss of generality we assume U o . . . .  , U m are open, 
U o . . . .  , U m are disjoint, a n d  prove that the non wandering set of the 
nearby flow must lie in U o u . . .  u Urn. 

By the no cycle assumption, 

W" A i n  WS A i =  A v  

For if xq~A i were a point of intersection then x r  (because co(x) is 
contained in A i, not in A j) and so we would have a cycle from Ai to itself. 

Now suppose the theorem is false. Then there are flows q~. ~ ~0 which 
have non wandering points in M - U ,  U = U o w. . .  u U m. Let us write, 
for clarity, r .) instead of ~0t(" ) and r .) instead of ~p.,,(.). Since 
M -  U is compact, we may assume without loss of generality that arbi- 
trarily near some x e M  - U, there occur non-wandering points of ~o,. 
Thus, there exist x. ,  y. tending to x such that ~0.(t,, x . ) = y ,  for some 
sequence t n ~ oo. 

Consider a ( x ) c A i o ,  co (x )cA i l .  Since we have no cycles io:t:i 1. 
Since co(x)c A~I, by continuity there is a sequence tl. ~ ~ such that 

O<t l .< t .  r Aic 

Thus there is a sequence T2 ~ ~ such that 

t ~ < T 2 < t .  ~o. (T2, x.) ~ c9 Ui,, 

r x.)~ U~ on [P., T)], 

Wnl - tln -.~ oo . 

We simply let T2 be defined as the first time t>t~ that q~.(t, x.)~dUq. 

Since q~.(t., x . ) = y , ~  Ui,, this T2 occurs before t.. 

Since Ai, is r T 2 -  t~ is forced to tend to ~ .  (Otherwise, 
by continuity and compactness of A~,, there would be a point x .  of 
Ai, having (p(t, x , )~dU h for some finite t. But q~(t,x.) must remain 
always in At. ) 

Since dUt, is compact, we may assume that 

~ . (  T), x.)--* xl  ~OUi, . 
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Since T. 1 - tl, ~ oo, d~_ (x 1) = Uil. 

Thus o~(xl)=Ai. Since xlCA and there are no cycles, o~(xl)=Ai~ 
with i z 4: i 1 ,  i 0 . 

Now we proceed with x ~ similarly. Since co(xl)=Ai2 by continuity 
there is a sequence t. z ~ oo such that 

T~ < t~ < t., q~ .(t2., xn) ~ Ai2. 

Thus there is a sequence T f ~ Go such that 

t 2 < T 2 < t , ,  r x.)~O U/2, 

q~,(t, x.)e Ui~ on [t 2, T2], 

2 2 
r n - - tn ' - '~c t ) .  

We simply let T, 2 be defined as the first time t > t. z that ~0,(t, x.)e0U~2. Since 
r162 this T ff occurs before t,. Since Ai2 is q~-invariant 
Tff- t t ,  is forced to tend to ~ .  Just as before, this produces x2e0Uh 
such that ct(x2) c A/2, og(x2)cAi3, i34~io, il, i 2. 

We may proceed with x 2 exactly as with x 1 and produce, by iteration, 
a chain of Ai's with no repetitions and length greater than m. This is 
ridiculous and the theorem is proved. 

As a consequence we have the O-stability theorem. That is 

(6.2) Corollary. I f  q~ is a C 1 f low obeying Axiom A' and its f2-de- 
composition O = O o w . . .  u O m has no cycles in the sense of  w 2 then it is 
O-stable. 

Proof. By (4.2) there are no self cycles in the O-decomposition, so we 
may let Ai = O~ and apply (6.1). The non-wandering set of any ~o' C ~ close 
to r lies in U o w. . .  u U,, where U~ is the neighborhood of O~ constructed 
in (5.1). Thus, iftp' is also C ~ near ~0, (5.1) says that q~' is O-conjugate to ~0, 
proving the corollary. 

w 7. Other Treatments of Global l'2-Expiosions 

Instead of the topological arguments given in w 6, we could have 
imitated Smale's filtration arguments applied to the time-one map qh- 
Saturating the resulting filtration by letting q~t act, 0 <  t <  1 would have 
been necessary to have r take the elements of the filtration into their 
interiors for all t > 2. 

Alternatively, and more in the spirit of flows, we could have defined 
a smooth gradient function f :  M ~ [0, m]. Let t2 o < O  1 < ... <O,,  be 
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a relabelling of the f2 i in a simple order subordinate to < .  Then f will 
obey 

a) f - 1  [0, i] = ~ s def - W ~j=~~i  f - l ( i ) ~ 2 i = ( 2 i "  
j<_i 

b) f increases strictly on each go trajectory off f2. 

Using the smooth Lyapunov theory of [6] it is not hard to show that 
f exists because f]i is a uniform repellor (a uniformly asymptotically 
unstable compact invariant set for go). In fact [6] produces a smooth 
Lyapunov function f~: M ~ [0, 1] such that 

ai) f/--l(o)~-~e'~i f i - l ( 1 ) = M  - WU~2i. 

bi) f i  strictly increases on each go trajectory in W" (2 i - ( 2  i. 
m 

Then f =  ~ f / i s  our gradient function and the usual arguments show 
0 

that. the trajectory of any go' which is C 1 near q~ also rises through the 
f-level surfaces away from 12. Hence O(go') can not occur far from f2. 

We wish to thank J. Palis and M. Hirsch for useful conversations. 
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