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FUTURE STABILITY IS NOT GENERIC
MICHAEL SHUB AND R. F. WILLIAMS!

In [2] S. Smale gave an example to show that structurally stable
systems are not dense in the space of all systems. His argument
plays two “invariants” against each other: The stable and unstable
manifolds. The purpose of this note is to give a new argument for this
result; the novelty here is that only one of these invariants is used.
Thus “future stable” systems are not dense. Future stability was
introduced in a recent lecture of S. Smale in which he expressed some,
if not much, hope that it would be a generic property.

We will consider only diffeomorphisms of a manifold. Each diffeo-
morphism corresponds (via “suspension”, e.g. [1, p. 797]) to a sys-
tem on a manifold of one higher dimension. In this setting we give
the following:

DEFINITIONS [AFTER SMALE]. For a diffeomorphism f: M—M we
say two points x, y& M are stably equivalent x~,y provided limu..
p(f*(x), f*(y)) =0. This is an equivalence relation and partitions M
into stable sets; the stable set containing x is called W*(x, f), or
We(x). We(x, f) is by definition W*(x, f~1). f is future stable if for all
nearby pertubations f’ of f there is a (topological) homeomorphism
h:M—M which sends stable sets of f into stable sets of f’; that is,
r(We(x, ) = W*(h(x), f'), for all xE M.

We also need a more technical definition. Suppose some of the
stable sets of f are smooth manifolds of codimension one, which
smoothly foliate an open set. Then locally they are the level sets of
a real valued function, say ¢: U—R. One says that an unstable set
We(p) hooks at W*(q) provided that there is xo& W*(p)N\W*(9) U
where ¢(x) is an isolated local maximum of the function W*(p)—R
given by x—¢(x). Let T2 be a two-dimensional torus.

THEOREM. Thereis an open set WC Diff*(T%), r= 2, and dense subsets
@, ® of U such that each fEU has an attractor Z (a 1-dimensional gen-
eralized solenoid) and a hyperbolic fixed point p, where

1. W=(x), W*(x) are smooth copies of R, for xEZ.

2.2 =Ua:€2 Wu(x)

3. A neighborhood of = is foliated by {W*(x):xEZ}.

4. We(p) hooks at, and only at, W*(q), where
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(a) g is a periodic point, if fEQ;
(b) g s aperiodic and has a dense orbit, if fER.

This result is due to S. Smale, who proved it (with appropriate
modification) for T%; for T2, see [3]. It is also true for the C*-topology
if one allows finitely many points to play the role of g.

Now for fEU, let B(f) be the compact set p\UW*(p)\IZ(f). B(f)
is the union of a certain solenoid, the point p and a line, Wu(p).

Claim. 1f f&, then f~! is not future stable. For otherwise there
would be nonempty open sets VCU such that each two B(f), fED
would be homeomorphic. But

LEMMA. For fEQ, gE®, B(f) and B(g) are not homeomorphic.

Proor. Let S be the closure of the graph of sin(1/x), x€R. Then
the line interval joining (0, 1) to (0, —1) is in S. Now finitely many
(as many as the period of ¢) points of Z(f) have small neighborhoods
which contain a topological copy of a small neighborhood in .S of
(0, 1). All other points of Z(f) have small neighborhoods of the form
(some set) X [0, 1], i.e. no arc doubles back, near them.

However, as the points in B(g) which correspond to points at
which W*(p) hooks at W*(g), converge to all of Z(g), Z(g) has no point
of this second type.
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