

Future Stability is Not Generic

Michael Shub; R. F. Williams

Proceedings of the American Mathematical Society, Vol. 22, No. 2 (Aug., 1969),
483-484.

Stable URL:

<http://links.jstor.org/sici?&sici=0002-9939%28196908%2922%3A2%3C483%3AFSING%3E2.0.CO%3B2-2>

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at <http://www.jstor.org/about/terms.html>. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <http://www.jstor.org/journals/ams.html>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

FUTURE STABILITY IS NOT GENERIC

MICHAEL SHUB AND R. F. WILLIAMS¹

In [2] S. Smale gave an example to show that structurally stable systems are not dense in the space of all systems. His argument plays two “invariants” against each other: The stable and unstable manifolds. The purpose of this note is to give a new argument for this result; the novelty here is that only one of these invariants is used. Thus “future stable” systems are not dense. Future stability was introduced in a recent lecture of S. Smale in which he expressed some, if not much, hope that it would be a generic property.

We will consider only diffeomorphisms of a manifold. Each diffeomorphism corresponds (via “suspension”, e.g. [1, p. 797]) to a system on a manifold of one higher dimension. In this setting we give the following:

DEFINITIONS [AFTER SMALE]. For a diffeomorphism $f: M \rightarrow M$ we say two points $x, y \in M$ are stably equivalent $x \sim_s y$ provided $\lim_{n \rightarrow \infty} \rho(f^n(x), f^n(y)) = 0$. This is an equivalence relation and partitions M into stable sets; the stable set containing x is called $W^s(x, f)$, or $W^s(x)$. $W^u(x, f)$ is by definition $W^s(x, f^{-1})$. f is *future stable* if for all nearby perturbations f' of f there is a (topological) homeomorphism $h: M \rightarrow M$ which sends stable sets of f into stable sets of f' ; that is, $h(W^s(x, f)) = W^s(h(x), f')$, for all $x \in M$.

We also need a more technical definition. Suppose some of the stable sets of f are smooth manifolds of codimension one, which smoothly foliate an open set. Then locally they are the level sets of a real valued function, say $\phi: U \rightarrow \mathbf{R}$. One says that an unstable set $W^u(p)$ *hooks at* $W^s(q)$ provided that there is $x_0 \in W^u(p) \cap W^s(q) \cap U$ where $\phi(x_0)$ is an isolated local maximum of the function $W^u(p) \rightarrow \mathbf{R}$ given by $x \rightarrow \phi(x)$. Let T^2 be a two-dimensional torus.

THEOREM. *There is an open set $\mathcal{U} \subset \text{Diff}^r(T^2)$, $r \geq 2$, and dense subsets \mathcal{A}, \mathcal{B} of \mathcal{U} such that each $f \in \mathcal{U}$ has an attractor Σ (a 1-dimensional generalized solenoid) and a hyperbolic fixed point p , where*

1. $W^u(x), W^s(x)$ are smooth copies of \mathbf{R} , for $x \in \Sigma$.
2. $\Sigma = \bigcup_{x \in \Sigma} W^u(x)$.
3. A neighborhood of Σ is foliated by $\{W^s(x) : x \in \Sigma\}$.
4. $W^u(p)$ hooks at, and only at, $W^s(q)$, where

Received by the editors December 19, 1968.

¹ The first author was partially supported during the period this research was done by Army contract DA-ARO-D-31-124-G866, the second by NSF Grant 5591.

- (a) q is a periodic point, if $f \in \mathcal{Q}$;
- (b) q is aperiodic and has a dense orbit, if $f \in \mathcal{B}$.

This result is due to S. Smale, who proved it (with appropriate modification) for T^3 ; for T^2 , see [3]. It is also true for the C^1 -topology if one allows finitely many points to play the role of q .

Now for $f \in \mathcal{U}$, let $B(f)$ be the compact set $p \cup W^u(p) \cup \Sigma(f)$. $B(f)$ is the union of a certain solenoid, the point p and a line, $W^u(p)$.

Claim. If $f \in \mathcal{U}$, then f^{-1} is not future stable. For otherwise there would be nonempty open sets $\mathcal{V} \subset \mathcal{U}$ such that each two $B(f)$, $f \in \mathcal{V}$ would be homeomorphic. But

LEMMA. *For $f \in \mathcal{Q}$, $g \in \mathcal{B}$, $B(f)$ and $B(g)$ are not homeomorphic.*

PROOF. Let S be the closure of the graph of $\sin(1/x)$, $x \in \mathbb{R}$. Then the line interval joining $(0, 1)$ to $(0, -1)$ is in S . Now finitely many (as many as the period of q) points of $\Sigma(f)$ have small neighborhoods which contain a topological copy of a small neighborhood in S of $(0, 1)$. All other points of $\Sigma(f)$ have small neighborhoods of the form (some set) $\times [0, 1]$, i.e. no arc doubles back, near them.

However, as the points in $B(g)$ which correspond to points at which $W^u(p)$ hooks at $W^s(q)$, converge to all of $\Sigma(g)$, $\Sigma(g)$ has no point of this second type.

BIBLIOGRAPHY

1. S. Smale, *Differentiable dynamical systems*, Bull. Amer. Math. Soc. **73** (1967), 747.
2. S. Smale, *Structurally stable systems are not dense*, Amer. J. Math. **88** (1966), 491.
3. R. Williams, *The D.A. maps of Smale and structural stability*, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I. (to appear).

BRANDEIS UNIVERSITY, NORTHWESTERN UNIVERSITY AND
UNIVERSITY OF GENEVA