
Topology Vol. 7, pp. 139-141 Pergamon Press, 1968. Printed in Great Britain 

EXPANDING ENDOMORPHISMS OF FLAT MANIFOLDS? 

DAVID EPSTEIN and MICHAEL SHUB 

(Received 28 November 1961) 

LET h4 be a compact differentiable manifold without boundary. A Cl-endomorphism 

f: IV--+ M is expanding if for some (and hence any) Riemannian metric on M there exist 

c > 0, 1 > 1 such that ]/7’f”ul] 2 c/Z~]/U]I for all u E TM and all integers m > 0. In this 

paper we show that any compact manifold with a flat Riemannian metric admits an ex- 

panding endomorphism. The classification of expanding endomorphisms, up to topo- 

logical conjugacy, was studied in [3]. It is of interest not only abstractly but also because 

the inverse limit of an expanding endomorphism can be considered as an indecomposable 

piece of the non-wandering set of diffeomorphism: see [4] and [5]. 

Preliminaries 

We require some standard facts from differential geometry which may all be found 

in [6]. Let E(n) denote the group of isometries of R”. So E(n) is the semi-direct product 

O(n). R”, where O(n) is the orthogonal group. We may consider a compact flat manifold 

as the orbit space Rn/r where I is a discrete uniform subgroup of E(n). Such a group I is 

called a crystallographic or Bieberbach group. Two of the Bieberbach theorems on these 

groups are : 

THEOREM 1. (Bieberbach). Zf r c E( n is a crystallographic group then r n R” is a ) 

normal subgroup ofjnite index in I-, and any minimal set of generators of r n R” is a vector 
space basis of R” relative to which the O(n)-components of the elements of r have all entries 

integral. 

THEOREM 2. (Bieberbach). Any isomorphism f: r -+ IX of crystallographic subgroups of 
E(n) is of the form y + ByB -‘for some a&e transformation B: R” + R”. 

Theorem 1 is as stated in [6; 3.2.11, and Theorem 2 is as stated in the proof of [6; 3.2.21. 

Moreover r/I n R” is isomorphic to the holonomy group of M, [6; 3.4.61. Henceforth, 

we will write A for I’ n R” and F for I/I n R”. The corresponding exact sequence is 

0 -+ A -+ r + F-t 0; it will be called the exact sequence associated to M. Recall that an 

invertible affine map B: R” + R” projects to an endomorphism of M = R”/lY if the map 

y-+ByB-’ maps I into itself that is BTB -’ c I-. The induced map on M is an expanding 
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endomorphism if the eigenvalues of the linear part of B are all greater than one in absolute 
value; in which case the induced map on M is called an affine expanding endomorphism. 

$2. CONSTRUCTION OF AFFINE EXPANDING ENDOMORPHISMS 

We begin with examples of affine expanding endomorphisms of the n-torus, T”. Con- 
sider T” as R”/Z” where Z” is the integral lattice. Let B, be an n by n matrix such that all 
the entries of B, are integers and all the eigenvalues of B, are greater than one in absolute 
value. B, may be thought of as a linear map B: R” +R” such that B(Z”) c Z”. Thus con- 
sidering Z” as a group of translations operating on R”, B(Z”) c Z” and B defines an affine 
expanding endomorphism of T”. Examples of such B’s are provided by k. I,, where k is 
an integer not equal to - 1, 0, or 1 and I,, is _the identity map of R”. 

The torus, T”, corresponds to I- = r n R” = A. We now consider the case where F 
has more than one element. The symbol IF 1 denotes the order of F. 

Notations 

Let B: R” -+ R” be an affine map. Then B = L, + vg where L, is a linear map and 
us denotes translation by the vector zig . 

We will prove the following theorem: 

THEOREM. Let M be a compact flat Riemannian manifold with associated exact 

sequence: 0 -+ A --t r + F -+ 0. Let IF 1 > 1 and let k be an integer greater than 0. Then 

there is an afine map B: R” -+ R” such that L, = (k IF j + 1). IRn and B projects to an afine 

expanding endomorphism of M. 

As an immediate and obvious corollary we have: 

COROLLARY. Any compact jlat Riemannian manifold is a non-trivial covering space 

of itself. 

We proceed as follows: We look for a commutative diagram 

O-+A-+l-+F-+O 

(*) 
IL II lrF 

o-+Ajr+F-+o 
such that L is (k IF ( + 1). IA. For then, since L is injective, f: lY -+ I? is a monomorphism. 
Thus, by Theorem 2 (Bieberbach), there is an affine transformation B: R” + R” such that 
f(y) = ByB - 1 for y E f’. Thus B projects to an endomorphism of M and L, I A = L 
= (k IF 1 + 1)1, . But by Theorem 1 (Bieberbach) A contains a vector space basis of R” 

so L,=(kJFI+l).I,,. 

LEMMA 1. Given (*) with L injectiue then L,IA = L. 

Proof. A = r n R*, so if a E A we consider a as the translation x --, x + a. Now 

B -I = L,-’ - LBel(vg). So BaB -l(x) = x + L,(a) and f(a) = BaB -I = L,(a). 

We now show the existence of a diagram (*) with the required L’s. A is considered 
as a left lY module under conjugation. Since A is abelian the action of A on itself is trivial 
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and thus the action of I- on A induces an action of F on A. Under these conditions A*, 

the elements of A left fixed under the action of A, equals A. H’(A, A)r, the r invariant 
elements of H’(A, A), is just Homr(A, A), the r module endomorphisms of A. (See [2] 
and [I, p. 1901). Thus the exact sequence in the remark [2, p. 1301 becomes for this case: 

(I) O+H’(F, A)-+H’(T, A)-+Hom’(A, A)+H’(F, A)-+H’(r, A). 

H’(T, A) is the group of all crossed homomorphisms $: I + A (i.e. all functions satisfying 
$(xy) = x$(y) + $(x) for x, y E I) module the principal crossed homomorphisms (i.e. 
functions of the form $(x) = xa - a for a fixed a E A). The map H’(T, A) --t Homr(A, A) 

in the sequence is just the restriction map. 

LEMMA 2. There is a correspondence between crossed homomorphisms 

diagrams (*), defined by I&X) = f(x)x- ‘. 

Proof. If 

O+A-+r3F-+O 

+:l--+A and 

is a commutative diagram, then p(x) = p(f(x)) for x E I’. So f(x)x-’ E Ker p and there 
is a unique a E A such that J-(x)x-’ = a. Now $(xy> =f(xy)(xr>-’ =f(x)f~)y-lx-’ = 
f(x)x_‘xf~)JJ-‘x-’ which is in additive notation Ii/(x) -t XI&J). On the other hand if 
$: I + A is a crossed homomorphism thenf(x) = $(x)x defines a homomorphismf: I -+ I?; 
for $(xy>xv = $(x)xI&)x-lxy = $(x)x$(y)y and f(x)x-’ = $(x)xx-’ = $(x) E A. So f 
induces the identity map on F. That is, the crossed homomorphism 1+5 corresponds to 
the diagram 

O-+A-+r+F-+O 

Ll 4 IrF 
O-+A+I-+F+O 

where f(x) = $(x)x and L(a) = $(a) + a for x E I and a E A. 

Proof of the Theorem. IA is obviously a I module endomorphism of A. IF 1 . u = 0 
for all u E H2(F, A) (see [l ; p. 2361). Therefore k 1 F 1 . IA E Homr(A, A) is sent to 0 in 
H ‘(F, A) by the map in (I). Thus by the exactness of (I), there is a crossed homomorphism 
$: r --t A, such that, considered as a crossed homomorphism, $1 A = k 1 F 1 . IA. Thus 
f(x) = $(x)x restricts to L: A + A, where L(u) = (k I F 1 + 1) . IA. 
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