

EXPANDING ENDOMORPHISMS OF FLAT MANIFOLDS†

DAVID EPSTEIN and MICHAEL SHUB

(Received 28 November 1967)

§1

LET M be a compact differentiable manifold without boundary. A C^1 -endomorphism $f: M \rightarrow M$ is expanding if for some (and hence any) Riemannian metric on M there exist $c > 0$, $\lambda > 1$ such that $\|Tf^m v\| \geq c\lambda^m \|v\|$ for all $v \in TM$ and all integers $m > 0$. In this paper we show that any compact manifold with a flat Riemannian metric admits an expanding endomorphism. The classification of expanding endomorphisms, up to topological conjugacy, was studied in [3]. It is of interest not only abstractly but also because the inverse limit of an expanding endomorphism can be considered as an indecomposable piece of the non-wandering set of a diffeomorphism: see [4] and [5].

Preliminaries

We require some standard facts from differential geometry which may all be found in [6]. Let $E(n)$ denote the group of isometries of R^n . So $E(n)$ is the semi-direct product $O(n) \cdot R^n$, where $O(n)$ is the orthogonal group. We may consider a compact flat manifold as the orbit space R^n/Γ where Γ is a discrete uniform subgroup of $E(n)$. Such a group Γ is called a crystallographic or Bieberbach group. Two of the Bieberbach theorems on these groups are:

THEOREM 1. (Bieberbach). *If $\Gamma \subset E(n)$ is a crystallographic group then $\Gamma \cap R^n$ is a normal subgroup of finite index in Γ , and any minimal set of generators of $\Gamma \cap R^n$ is a vector space basis of R^n relative to which the $O(n)$ -components of the elements of Γ have all entries integral.*

THEOREM 2. (Bieberbach). *Any isomorphism $f: \Gamma \rightarrow \Sigma$ of crystallographic subgroups of $E(n)$ is of the form $\gamma \rightarrow B\gamma B^{-1}$ for some affine transformation $B: R^n \rightarrow R^n$.*

Theorem 1 is as stated in [6; 3.2.1], and Theorem 2 is as stated in the proof of [6; 3.2.2]. Moreover $\Gamma/\Gamma \cap R^n$ is isomorphic to the holonomy group of M , [6; 3.4.6]. Henceforth, we will write A for $\Gamma \cap R^n$ and F for $\Gamma/\Gamma \cap R^n$. The corresponding exact sequence is $0 \rightarrow A \rightarrow \Gamma \rightarrow F \rightarrow 0$; it will be called the exact sequence associated to M . Recall that an invertible affine map $B: R^n \rightarrow R^n$ projects to an endomorphism of $M = R^n/\Gamma$ if the map $\gamma \rightarrow B\gamma B^{-1}$ maps Γ into itself that is $B\Gamma B^{-1} \subset \Gamma$. The induced map on M is an expanding

† This work was partially supported by National Science Foundation Grants GP-5603 and GP-6868.

endomorphism if the eigenvalues of the linear part of B are all greater than one in absolute value; in which case the induced map on M is called an affine expanding endomorphism.

§2. CONSTRUCTION OF AFFINE EXPANDING ENDOMORPHISMS

We begin with examples of affine expanding endomorphisms of the n -torus, T^n . Consider T^n as R^n/Z^n where Z^n is the integral lattice. Let B_1 be an n by n matrix such that all the entries of B_1 are integers and all the eigenvalues of B_1 are greater than one in absolute value. B_1 may be thought of as a linear map $B: R^n \rightarrow R^n$ such that $B(Z^n) \subset Z^n$. Thus considering Z^n as a group of translations operating on R^n , $B(Z^n) \subset Z^n$ and B defines an affine expanding endomorphism of T^n . Examples of such B 's are provided by $k \cdot I_{R^n}$ where k is an integer not equal to $-1, 0$, or 1 and I_{R^n} is the identity map of R^n .

The torus, T^n , corresponds to $\Gamma = \Gamma \cap R^n = A$. We now consider the case where F has more than one element. The symbol $|F|$ denotes the order of F .

Notations

Let $B: R^n \rightarrow R^n$ be an affine map. Then $B = L_B + v_B$ where L_B is a linear map and v_B denotes translation by the vector v_B .

We will prove the following theorem:

THEOREM. *Let M be a compact flat Riemannian manifold with associated exact sequence: $0 \rightarrow A \rightarrow \Gamma \rightarrow F \rightarrow 0$. Let $|F| > 1$ and let k be an integer greater than 0. Then there is an affine map $B: R^n \rightarrow R^n$ such that $L_B = (k|F| + 1) \cdot I_{R^n}$ and B projects to an affine expanding endomorphism of M .*

As an immediate and obvious corollary we have:

COROLLARY. *Any compact flat Riemannian manifold is a non-trivial covering space of itself.*

We proceed as follows: We look for a commutative diagram

$$(*) \quad \begin{array}{ccccccc} 0 & \rightarrow & A & \rightarrow & \Gamma & \rightarrow & F & \rightarrow 0 \\ & & \downarrow L & & \downarrow f & & \downarrow I_F & \\ 0 & \rightarrow & A & \rightarrow & \Gamma & \rightarrow & F & \rightarrow 0 \end{array}$$

such that L is $(k|F| + 1) \cdot I_A$. For then, since L is injective, $f: \Gamma \rightarrow \Gamma$ is a monomorphism. Thus, by Theorem 2 (Bieberbach), there is an affine transformation $B: R^n \rightarrow R^n$ such that $f(\gamma) = B\gamma B^{-1}$ for $\gamma \in \Gamma$. Thus B projects to an endomorphism of M and $L_B|A = L = (k|F| + 1)I_A$. But by Theorem 1 (Bieberbach) A contains a vector space basis of R^n so $L_B = (k|F| + 1) \cdot I_{R^n}$.

LEMMA 1. *Given $(*)$ with L injective then $L_B|A = L$.*

Proof. $A = \Gamma \cap R^n$, so if $a \in A$ we consider a as the translation $x \rightarrow x + a$. Now $B^{-1} = L_B^{-1} - L_B^{-1}(v_B)$. So $BaB^{-1}(x) = x + L_B(a)$ and $f(a) = BaB^{-1} = L_B(a)$.

We now show the existence of a diagram $(*)$ with the required L 's. A is considered as a left Γ module under conjugation. Since A is abelian the action of A on itself is trivial

and thus the action of Γ on A induces an action of F on A . Under these conditions A^A , the elements of A left fixed under the action of A , equals A . $H^1(A, A)^\Gamma$, the Γ invariant elements of $H^1(A, A)$, is just $\text{Hom}^\Gamma(A, A)$, the Γ module endomorphisms of A . (See [2] and [1, p. 190]). Thus the exact sequence in the remark [2, p. 130] becomes for this case:

$$(I) \quad 0 \rightarrow H^1(F, A) \rightarrow H^1(\Gamma, A) \rightarrow \text{Hom}^\Gamma(A, A) \rightarrow H^2(F, A) \rightarrow H^2(\Gamma, A).$$

$H^1(\Gamma, A)$ is the group of all crossed homomorphisms $\psi: \Gamma \rightarrow A$ (i.e. all functions satisfying $\psi(xy) = x\psi(y) + \psi(x)$ for $x, y \in \Gamma$) modulo the principal crossed homomorphisms (i.e. functions of the form $\psi(x) = xa - a$ for a fixed $a \in A$). The map $H^1(\Gamma, A) \rightarrow \text{Hom}^\Gamma(A, A)$ in the sequence is just the restriction map.

LEMMA 2. *There is a correspondence between crossed homomorphisms $\psi: \Gamma \rightarrow A$ and diagrams (*), defined by $\psi(x) = f(x)x^{-1}$.*

Proof. If

$$\begin{array}{ccccccc} 0 & \rightarrow & A & \rightarrow & \Gamma & \xrightarrow{p} & F & \rightarrow & 0 \\ & & \downarrow & & \downarrow f & & \downarrow I_F & & \\ 0 & \rightarrow & A & \rightarrow & \Gamma & \xrightarrow{p} & F & \rightarrow & 0 \end{array}$$

is a commutative diagram, then $p(x) = p(f(x))$ for $x \in \Gamma$. So $f(x)x^{-1} \in \text{Ker } p$ and there is a unique $a \in A$ such that $f(x)x^{-1} = a$. Now $\psi(xy) = f(xy)(xy)^{-1} = f(x)f(y)y^{-1}x^{-1} = f(x)x^{-1}xf(y)y^{-1}x^{-1}$ which is in additive notation $\psi(x) + x\psi(y)$. On the other hand if $\psi: \Gamma \rightarrow A$ is a crossed homomorphism then $f(x) = \psi(x)x$ defines a homomorphism $f: \Gamma \rightarrow \Gamma$; for $\psi(xy)xy = \psi(x)x\psi(y)y^{-1}xy = \psi(x)x\psi(y)y$ and $f(x)x^{-1} = \psi(x)xx^{-1} = \psi(x) \in A$. So f induces the identity map on F . That is, the crossed homomorphism ψ corresponds to the diagram

$$\begin{array}{ccccccc} 0 & \rightarrow & A & \rightarrow & \Gamma & \rightarrow & F & \rightarrow & 0 \\ L \downarrow & & f \downarrow & & & & \downarrow I_F & & \\ 0 & \rightarrow & A & \rightarrow & \Gamma & \rightarrow & F & \rightarrow & 0 \end{array}$$

where $f(x) = \psi(x)x$ and $L(a) = \psi(a) + a$ for $x \in \Gamma$ and $a \in A$.

Proof of the Theorem. I_A is obviously a Γ module endomorphism of A . $|F| \cdot v = 0$ for all $v \in H^2(F, A)$ (see [1; p. 236]). Therefore $k|F| \cdot I_A \in \text{Hom}^\Gamma(A, A)$ is sent to 0 in $H^2(F, A)$ by the map in (I). Thus by the exactness of (I), there is a crossed homomorphism $\psi: \Gamma \rightarrow A$, such that, considered as a crossed homomorphism, $\psi|A = k|F| \cdot I_A$. Thus $f(x) = \psi(x)x$ restricts to $L: A \rightarrow A$, where $L(a) = (k|F| + 1) \cdot I_A$.

REFERENCES

1. H. CARTAN and S. EILENBERG: *Homological Algebra*, Princeton University Press, 1956.
2. G. HOCHSCHILD and J. P. SERRE: Cohomology of group extensions, *Trans. Am. math. Soc.* **74** (1953), 110-134.
3. M. SHUB: Endomorphisms of compact differentiable manifolds; to appear.
4. S. SMALE: Differentiable dynamical systems, *Bull. Am. math. Soc.* **73** (1967), 747-817.
5. R. F. WILLIAMS: One-dimensional non-wandering sets; to appear.
6. J. A. WOLF: *Spaces of Constant Curvature*, McGraw Hill, 1967.

Warwick University and University of California, Berkeley
University of California, Berkeley and Brandeis University, Waltham, Mass.