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§1

LET M be a compact differentiable manifold without boundary. A C!'-endomorphism
f: M — M is expanding if for some (and hence any) Riemannian metric on M there exist
¢>0, 1> 1 such that |[Tf™v]| = cA™|v| for all ve TM and all integers m > 0. In this
paper we show that any compact manifold with a flat Riemannian metric admits an ex-
panding endomorphism. The classification of expanding endomorphisms, up to topo-
logical conjugacy, was studied in [3]. It is of interest not only abstractly but also because
the inverse limit of an expanding endomorphism can be considered as an indecomposable
piece of the non-wandering set of diffeomorphism: see [4] and [5].

Preliminaries

We require some standard facts from differential geometry which may all be found
in [6]. Let E(n) denote the group of isometries of R". So E(n) is the semi-direct product
O(n). R*, where O(n) is the orthogonal group. We may consider a compact flat manifold
as the orbit space R"/I" where I' is a discrete uniform subgroup of E(#). Such a group I' is
called a crystallographic or Bieberbach group. Two of the Bieberbach theorems on these
groups are:

THEOREM 1. (Bieberbach). If T" = E(n) is a crystallographic group then T n R" is a
normal subgroup of finite index in I, and any minimal set of generators of U n R" is a vector
space basis of R" relative to which the O(n)-components of the elements of ' have all entries
integral.

THEOREM 2. (Bieberbach). Any isomorphism f: I — Z of crystallographic subgroups of
E(n) is of the formy — ByB ~! for some affine transformation B: R* - R".

Theorem 1 is as stated in [6; 3.2.1], and Theorem 2 is as stated in the proof of [6; 3.2.2].
Moreover I'/T n R" is isomorphic to the holonomy group of M, [6; 3.4.6). Henceforth,
we will write A for I' n R" and F for I'/T’ n R". The corresponding exact sequence is
0—+A4-T - F-0; it will be called the exact sequence associated to M. Recall that an
invertible affine map B: R" - R" projects to an endomorphism of M = R*/I" if the map
y = ByB ~! maps I into itself that is BB ~! = I'. The induced map on M is an expanding
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endomorphism if the eigenvalues of the linear part of B are all greater than one in absolute
value; in which case the induced map on M is called an affine expanding endomorphism.

§2. CONSTRUCTION OF AFFINE EXPANDING ENDOMORPHISMS

We begin with examples of affine expanding endomorphisms of the n-torus, T". Con-
sider T" as R"/Z" where Z" is the integral lattice. Let B, be an » by # matrix such that all
the entries of B; are integers and all the eigenvalues of B, are greater than one in absolute
value. B, may be thought of as a linear map B: R" — R" such that B(Z") « Z". Thus con-
sidering Z" as a group of translations operating on R", B(Z") = Z" and B defines an affine
expanding endomorphism of 7”. Examples of such B’s are provided by k. I, where k is
an integer not equal to —1, 0, or 1 and I, is the identity map of R".

The torus, 7", corresponds to I'=I n R" = A. We now consider the case where F
has more than one element. The symbol |F| denotes the order of F.

Notations

Let B: R"— R" be an affine map. Then B= Ly + vy where Ly is a linear map and
vp denotes translation by the vector vy.

We will prove the following theorem:

THEOREM. Let M be a compact flat Riemannian manifold with associated exact
sequence: 0> A—->T - F-0. Let |F|>1 and let k be an integer greater than 0. Then
there is an affine map B: R" — R" such that Ly = (k|F| 4+ 1). 1, and B projects to an affine
expanding endomorphism of M.

As an immediate and obvious corollary we have:

COROLLARY. Any compact flat Riemannian manifold is a non-trivial covering space
of itself.

We proceed as follows: We look for a commutative diagram

0—-A—-T—-F—0
(*) lL lf lIF

0—-+A—-T—>F—0
such that L is (k |F| + 1).I,. For then, since L is injective, f: I' > I" is a monomorphism.
Thus, by Theorem 2 (Bieberbach), there is an affine transformation B: R" — R" such that

f(y) =ByB~1! for yeT'. Thus B projects to an endomorphism of M and Lz|A =L
= (k|F| + 1)I,. But by Theorem 1 (Bieberbach) A contains a vector space basis of R"

so Lp=(k|F|+1).1Ig,.

LeMMA 1. Given (¥) with L injective then Lg|A = L.

Proof. A=T N R", so if ae A we consider a as the translation x - x 4+ a. Now
B l'=L;"'— Ly (vp). So BaB~'(x) = x + Lg(a) and f(a) = BaB ™' = Ly(a).

We now show the existence of a diagram (*) with the required L’s. 4 is considered
as a left I" module under conjugation. Since A is abelian the action of 4 on itself is trivial
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and thus the action of T on A4 induces an action of F on A. Under these conditions A4,
the elements of A4 left fixed under the action of A4, equals 4. H'(4, A)T, the I invariant
elements of H(A, A), is just Hom'(4, A), the I’ module endomorphisms of A. (See [2]
and [1, p. 190]). Thus the exact sequence in the remark [2, p. 130] becomes for this case:

)] 0— H'(F, A)— HY(', A)—Hom" (4, A)— H*(F, A)— H(T, A).

HY(T, A) is the group of all crossed homomorphisms yr: I -+ 4 (i.e. all functions satisfying
Y(xy) = xy(y) + Y(x) for x,yeI') modulo the principal crossed homomorphisms (i.e.
functions of the form ¥(x) = xa — a for a fixed a € 4). The map H'(T', A) » Hom' (4, A)
in the sequence is just the restriction map.

LEMMA 2. There is a correspondence between crossed homomorphisms y: T — A and
diagrams (%), defined by Y(x) = f(x)x~ 1.
Proof. If

0—A-THF-0

I
0-A—T5F—0
is a commutative diagram, then p(x) = p(f(x)) for xeI'. So f(x)x ' e Kerp and there
is a unique a € 4 such that f(x)x™! = a. Now y(xy) = f»)(xp) ™! = f()f )y Ix~ 1=
FOOx xf(y)y~'x~' which is in additive notation ¥(x) + x¥(y). On the other hand if
Y: T — A is a crossed homomorphism then f(x) = y/(x)x defines a homomorphism f: T~ I’;
for Y(xy)xy = Y)xy(x~ xpy = Y(xIxp(y)y and f(x)x~! = Y(x)xx~' = Y(x) e 4. So f
induces the identity map on F. That is, the crossed homomorphism y corresponds to
the diagram
0—-A—>IT—>F—0
d oo e

0—-A—-T'—-F—-0
where f(x) = y(x)x and L(a) = y(a) + a for xe " and a € A.

Proof of the Theorem. I, is obviously a I' module endomorphism of 4. |[F|.v =0
for all ve H*(F, A) (see [1; p. 236]). Therefore k| F|.I, e Hom'(4, 4) is sent to 0 in
H?(F, A) by the map in (I). Thus by the exactness of (I), there is a crossed homomorphism
y:I' — A, such that, considered as a crossed homomorphism, |4 =k|F|.I,. Thus
S(x) = Y(x)x restricts to L: A - A4, where Lia)=(k|F|+1).1,.
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